Deterministic Public Key Encryption and Identity-Based Encryption from Lattices in the Auxiliary-Input Setting
نویسندگان
چکیده
Deterministic public key encryption (D-PKE) provides an alternative to randomized public key encryption in various scenarios (e.g. search on encrypted data) where the latter exhibits inherent drawbacks. In CRYPTO’11, Brakerski and Segev formalized a framework for studying the security of deterministic public key encryption schemes with respect to auxiliary inputs. A trivial requirement is that the plaintext should not be efficiently recoverable from the auxiliary inputs. In this paper, we present an efficient deterministic public key encryption scheme in the auxiliary-input setting from lattices. The public key size, ciphertext size and ciphertext expansion factor are improved compared with the scheme proposed by Brakerski and Segev. Our scheme is also secure even in the multi-user setting where related messages may be encrypted under multiple public keys. In addition, the security of our scheme is based on the hardness of the learning with errors (LWE) problem which remains hard even for quantum algorithms. Furthermore, we consider deterministic identity-based public key encryption (D-IBE) in the auxiliaryinput setting. The only known D-IBE scheme (without considering auxiliary inputs) in the standard model was proposed by Bellare et al. in EUROCRYPT’12. However, this scheme is only secure in the selective security setting, and Bellare et al. identified it as an open problem to construct adaptively secure D-IBE schemes. The second contribution of this work is to propose a D-IBE scheme from lattices that is adaptively secure.
منابع مشابه
Encryptor Combiners: A Unified Approach to Multiparty NIKE, (H)IBE, and Broadcast Encryption
We define the concept of an encryptor combiner. Roughly, such a combiner takes as input n public keys for a public key encryption scheme, and produces a new combined public key. Anyone knowing a secret key for one of the input public keys can learn the secret key for the combined public key, but an outsider who just knows the input public keys (who can therefore compute the combined public key ...
متن کاملTrapdoors for Ideal Lattices with Applications
There is a lack of more complicated ideal-lattice-based cryptosystems which require the use of lattice trapdoors, for the reason that currently known trapdoors are either only applicable to general lattices or not well-studied in the ring setting. To facilitate the development of such cryptosystems, we extend the notion of lattice trapdoors of Micciancio and Peikert (Eurocrypt ’12) into the rin...
متن کاملIdentity-Based Encryption Resilient to Continual Auxiliary Leakage
We devise the first identity-based encryption (IBE) that remains secure even when the adversary is equipped with auxiliary input (STOC ’09) – any computationally uninvertible function of the master secret key and the identity-based secret key. In particular, this is more general than the tolerance of Chow et al.’s IBE schemes (CCS ’10) and Lewko et al.’s IBE schemes (TCC ’11), in which the leak...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملAdaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method
In view of the expiration or reveal of user’s private credential (or private key) in a realistic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism, or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant. In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.’s IBE schemes with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012